Виды и особенности солнечных батарей для дома

Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей

Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, повышается их КПД.

При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца, необходимо предварительно узнать об отличиях оборудования, понять, какие солнечные панели подходят под климатические условия определенного региона.

Мы поможем разобраться в этом вопросе. В статье рассмотрен принцип работы фотоэлектрических преобразователей, приведен обзор разных видов солнечных батарей с указанием их характеристик, преимуществ и недостатков. Ознакомившись с материалом, вы сможете сделать правильный выбор для обустройства эффективной гелиосистемы.

Принцип работы солнечных панелей

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.

Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.

Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.

Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов – принцип работы батареи при этом не изменяется.

Типы фотоэлектрических преобразователей

Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя.

Различают такие виды батарей по типу устройства:

Гибкие тонкопленочные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.

По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:

  1. Кремниевые: монокристаллические, поликристаллические, аморфные.
  2. Теллурий-кадмиевые.
  3. На основе селенида индия- меди-галлия.
  4. Полимерные.
  5. Органические.
  6. На основе арсенида галлия.
  7. Комбинированные и многослойные.

Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида.

Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.

Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25°C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.

Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.

Характеристики панелей на основе кремния

Кремний для солнечных батарей изготавливают из кварцевого порошка – размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны.

Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.

Монокристаллические кремниевые панели

Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.

Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.

Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.

Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.

К преимуществам монокристаллических кремниевых батарей относят:

  1. Высокий КПД со значением 17-25%.
  2. Компактность – меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
  3. Долговечность – достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.

Недостатков у таких батарей всего два:

  1. Высокая стоимость и длительная окупаемость.
  2. Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.

Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.

Поликристаллические солнечные батареи

Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.

Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.

Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы.

На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.

Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.

К достоинствам солнечных батарей с разнонаправленными кристаллами относят:

  1. Высокая эффективность в условиях рассеянного света.
  2. Возможность стационарного монтажа на крышах зданий.
  3. Меньшая стоимость по сравнению с монокристаллическими панелями.
  4. Длительность эксплуатации – падение эффективности через 20 лет эксплуатации составляет всего 15-20%.

Недостатки у поликристаллических панелей также имеются:

  1. Пониженный КПД со значением 12-18%.
  2. Относительная громоздкость – требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.

Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.

Солнечные панели из аморфного кремния

Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку.

В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.

На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%.

Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.

За счет особенностей данной производственной технологии, создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.

Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями.

Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.

Подытоживая, можно указать такие преимущества аморфных солнечных панелей:

  1. Универсальность – возможность изготовления гибких и тонких панелей, монтаж батарей на любые архитектурные формы.
  2. Высокий КПД при рассеянном свете.
  3. Стабильная работа при высоких температурах.
  4. Простота и надежность конструкции. Такие панели практически не ломаются.
  5. Сохранение работоспособности в сложных условиях – меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов

Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Какую солнечную панель выбрать?

Выбор солнечных панелей для загородных домов на широте 45-60° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели.

При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.

Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.

Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.

Некоторые мастера предпочитают собирать солнечные батареи собственноручно. На нашем сайте есть статьи с подробным описанием технологии изготовления таких панелей, их подключению и обустройству отопительных гелиосистем .

Выводы и полезное видео по теме

Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.

Правила выбора солнечных панелей и сопутствующего оборудования:

Виды солнечных панелей:

Тестирование монокристаллической и поликристаллической панелей:

Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что скоро энергия солнца станет главным источником электроэнергии во многих загородных домах.

Всем заинтересованным в вопросе выбора и использования солнечных батарей предлагаем оставлять комментарии, задавать вопросы и участвовать в обсуждениях. Форма для связи расположена в нижнем блоке.

Солнечные батареи: характеристики и особенности использования

Ежеминутно на поверхность нашей планеты попадает много солнечной энергии, без которой жизнь на Земле невозможна. Однако это еще не все, на что она способна, сегодня мы вступаем в эру альтернативных возобновляемых источников энергии, используя активность Солнца, ветра и воды. Крупнейшие солнечные электростанции уже вырабатывают около 1% всей мировой электроэнергии, поэтому будущее за новыми разработками. И этим мы обязаны науке и современным технологиям, благодаря которым это стало возможным.

Устройство панелей

Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.

Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.

В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.

  • Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
  • Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
  • Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
  • Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.
Читайте также:  Поликристаллические или монокристаллические солнечные батареи

Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.

Технические характеристики

Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.

В массовом производстве используется три типа элементов из кремния.

  • Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
  • Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
  • Тонкопленочные – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.

Идеально, если солнечные батареи могут полностью обеспечить дом электроэнергией. Но довольно часто энергия Солнца используется для горячего водоснабжения или же для отопления. Но чтобы выполнить любую из этих целей, необходимо высчитать реальную мощность на квадратный метр и необходимое количество модулей. Мощность солнечного модуля зависит от количества солнечных лучей, которые попадают на поверхность батареи. Чтобы правильно сделать выбор, также следует изучить принцип действия домашней мини-электростанции.

Принцип действия

Первый прототип гелиоколлектора, который всем известен еще с прошлого века – это дачный летний душ. Он представлял собой большую емкость, которая окрашивалась в черный цвет, в течение дня вода в ней нагревалась, что позволяло каждому дачнику вечером принимать теплый душ.

Гелиоколлектор – это плоская панель, которая располагается на улице, как правило, на крыше, и способна преобразовывать 90% солнечного излучения в энергию. В дальнейшем энергия отправляется в систему и распределяется на нужды электроснабжения. Но если гелиосистема используется для отопления или горячего водоснабжения, то энергия при помощи маломощного насоса направляется в бак-аккумулятор.

В разное время суток и в разные сезоны уровень освещения меняется. Поэтому для обеспечения бесперебойной поставки энергии в дом солнечная батарея имеет целую систему. Ученые научились управлять таким микрофизическим явлением, как фотоэлектрический эффект. И хотя, на первый взгляд, принцип действия кажется технически сложным, в действительности, принцип действия и схема электрической цепи выглядят очень просто.

Основная задача всей системы заключается в том, чтобы преобразовать энергию солнца и выдать постоянный ток определенной величины.

Плюсы и минусы

Установить солнечные батареи в своем доме может каждый желающий.

К тому же они имеют множество преимуществ.

  • Энергоэффективность – в зависимости от своего вида солнечные батареи имеют разный показатель. Но в среднем КПД составляет от 14 до 30%.
  • Солнечные батареи особенно востребованы на дачных участках. И этому есть два разумных объяснения. Во-первых, дачные участки зачастую находятся вдали от централизованных источников энергоснабжения в районах с малоразвитой инфраструктурой. И во-вторых, преобразование солнечных лучей в энергию особенно актуально именно в разгар дачного сезона – летом.
  • При необходимости мини-электростанцию можно дополнять новыми солнечными батареями для увеличения мощности.
  • Экономия – для южных регионов страны использование солнечной батареи для горячего водоснабжения позволяет сэкономить до 60% энергии в среднем за год: 30% зимой и 100% летом.
  • Подобные системы актуальны не только для частного использования, например, для дома, но и для предприятий, образовательных и медицинских учреждений. В производственном цехе солнечную батарею можно использовать в качестве дополнительного источника тепла для центрального отопления зимой, а летом – для подачи технологической горячей воды.
  • Выгода – заплатить за оборудование необходимо только один раз, впоследствии система не требует никаких вложений и обслуживания.
  • Экологический источник энергии – особенно важный аспект в планетарном плане, потому что запасы энергоносителей на Земле не безграничны.
  • Надежность – в данном случае многое зависит от выбранной модели и правильности установки.

Несмотря на множество плюсов, солнечные батареи имеют один весомы недостаток: их разумнее использовать в регионах с малым числом пасмурных дней в году, а таких на территории России очень ограниченное количество.

Стоит отметить, что система окупается через несколько лет и позволяет владельцу в будущем экономить колоссальные деньги. К примеру исходя из сегодняшних тарифов на электричество и дизель, можно с уверенностью сказать, гелиосистема окупится за 3-4 года в частном загородном коттедже для семьи из 5-7 человек. А при переходе с газа – окупаемость составит до 8-10 лет.

Виды солнечных батарей

В настоящее время большое внимание уделяется технологическим разработкам в области альтернативных источников электроэнергии. Среди них все более популярными становятся системы, использующие энергию солнца для генерации электрического тока. Они включают в себя набор компонентов, в том числе и различные виды солнечных батарей, отличающихся физическими свойствами и техническими характеристиками.

Основные виды и классификация солнечных батарей

Все солнечные батареи, известные в настоящее время, можно классифицировать следующим образом:

  • Устройства малой мощности, предназначенные для питания и зарядки небольших приборов – смартфонов, планшетов и т.д. Их можно применять вне стационарных сетей.
  • Универсальные батареи. Обеспечивают питание электронных устройств при отсутствии стационарной сети.
  • Солнечная батарея (панель). Состоят из набора фотоэлементов, закрепленных на подложке. Получили наиболее широкое распространение и в свою очередь разделяются на отдельные категории.


Классификация и типы солнечных батарей (модулей):

  • Фотоэлектрические преобразователи. Конструктивно являются полупроводниковыми устройствами для преобразования солнечной энергии напрямую в электрическую. Несколько элементов, соединенных между собой, становятся солнечной батареей, которая выглядит как панель. Принцип действия заключается в фотоэлектрическом эффекте, когда в неоднородных полупроводниковых структурах под действием солнечного света появляется электрический ток. Электрофизические характеристики полупроводников могут отличаться, что влияет и на эффективность самого преобразователя.
  • Гелиоэлектростанции. Представляют собой солнечные установки, работающие от концентрированной энергии солнца, приводящей в движение паровые, газотурбинные и другие агрегаты. Принцип работы основан на использовании обычных линз или вогнутых зеркал, собирающих и концентрирующих солнечные лучи. В фокусе размещается нагревательный элемент, температура которого постепенно увеличивается. Зеркала считаются более эффективными, поскольку дают возможность получить более мощное излучение.
  • Солнечные коллекторы. Относятся к низкотемпературным нагревательным установкам, обеспечивающим горячее водоснабжение в автономном режиме. Широко применяются и в других сферах. Мощность каждого устройства полностью зависит от его полезной площади. Они способны нагревать жидкости до температур в диапазоне 100-200 С.

Дополнительная классификация

Существует еще целый ряд признаков, позволяющих классифицировать солнечные батареи. Среди них большое значение имеет расположение атомов кремния в кристаллическом элементе.

В связи с этим, можно выделить следующие типы солнечных батарей:

  • Монокристаллические. Для их изготовления применяется кремний высокой чистоты, получаемый промышленным способом. КПД таких батарей составляет 14-17%.
  • Поликристаллические. Этот вид солнечных батарей изготавливается из кремниевого расплава, медленно охлаждаемого до нужного состояния. Данный способ значительно дешевле, а полученный кремний приобретает ярко синий цвет. КПД таких элементов ниже, в пределах 10-12%.
  • Панели на основе аморфного кремния. Они относятся к категории тонкопленочных, поскольку кремний наносится на основу как очень тонкая пленка и покрывается защитным материалом. Данный метод изготовления считается наиболее дешевым и простым, но эффективность таких изделий ниже, чем в любом кристаллическом варианте. Компоненты панелей постепенно теряют свои качества. КПД находится на уровне 5-6%.

Основные виды солнечных панелей следует рассмотреть более подробно. Зная их параметры и технические характеристики, гораздо легче сделать правильный выбор.

Солнечные панели на основе кремния

Наибольшей популярностью пользуются элементы, основой которых является моно-кристаллический кремний. Производство осуществляется методом литья, а новые технологии дают возможность получать совершенно чистые кристаллы кремния. Твердение расплава происходит во взаимодействии с кристаллической затравкой.

В процессе охлаждения и застывания образуются цилиндрические монокристаллы, диаметр которых составляет от 13 до 20 см, а длина – 2 м. Стержни разрезаются на отдельные части. Толщина каждого кружка выдерживается в пределах 0,2-0,4 мм. Из этих кружочков образуются ячейки. Для одной панели их оптимальное количество составляет 36 единиц.

Наиболее качественные кристаллы позволяют увеличить КПД до 19%. В таких монокристаллах атомы сориентированы таким образом, что подвижность электронов заметно возрастает. Весь кремний пронизан металлической сеткой, выполняющей функцию электродов. Для установки панели предусмотрена алюминиевая рамка, после чего модуль закрывается противоударным защитным стеклом. Полученная поверхность бывает черного или темно синего цвета.

Монокристаллические кремниевые солнечные батареи отличаются надежностью и долговечностью. Расчетный срок эксплуатации составляет 50 лет. Отсутствие движущихся деталей существенно упрощает монтаж. Они используются в районах с большим количеством солнечных дней, где обычное энергоснабжение работает с перебоями. Высокая эффективность панелей определяется их высокой стоимостью. В большинстве случаев их использование экономически выгодно и целесообразно.

В более дешевых батареях используется мультикристаллический кремний, в состав которого входят различные монокристаллические решетки, собранные в случайном порядке. Срок эксплуатации таких устройств планируется не более 25 лет, а их КПД и стоимость гораздо ниже, чем у классических панелей.

Существует еще один вариант солнечных батарей, в которых использовались элементы поликристаллического кремния. Он также отличается низкой стоимостью, а его кристаллы находятся в агрегатном состоянии, обладают различной формой и ориентацией. В отличие от монокристаллов, они окрашены в собственный ярко синий цвет. Производство таких компонентов постоянно совершенствуется и в настоящее время их параметры лишь незначительно отличаются от лидирующих конструкций.

Производство поликристаллов осуществляется путем медленного охлаждения кремниевой субстанции. Процесс изготовления быстрый и дешевый, однако КПД таких панелей получается достаточно низким. Причина заключается в образовании внутренних поликристаллов, снижающих эффективность батарей.

Тонкопленочные технологии для солнечных панелей

Изобретение технологии с использованием тонкой пленки дало возможность постепенно вытеснить кристаллические солнечные панели, приближаясь к ним по своим техническим характеристикам. Основные преимущества таких изделий заключаются в их невысокой себестоимости, которая становится определяющим фактором в конкурентной борьбе. Модули нового типа отличаются гибкостью, легкостью и эластичностью, что дает возможность устанавливать их практически на любые поверхности.

Основными компонентами пленочных систем являются алюминий, аморфный кремний, теллурид кадмия и другие виды полупроводников, из которых состоит вся конструкция. Все элементы закрепляются на полимерной пленке и составляют единое целое. Количество вырабатываемой электроэнергии напрямую зависит от площади изделия.

В самом начале в тонкопленочных элементах применялся аморфный кремний, наносимый на подложку. Такая конструкция, где используются эти компоненты служила совсем недолго, а КПД составлял всего лишь 4-5%. С улучшением технологии эти показатели возросли, в том числе и КПД, который достиг 8%. Тонкопленочные солнечные батареи третьего поколения увеличили этот показатель до 12% и стали вполне конкурентоспособными по отношению к кремниевым панелям. Таких показателей удалось достичь за счет селенида меди-индия и теллурида кадмия, нашедших свое применение еще в первых портативных зарядных устройствах.

Теллурид кадмия считается более перспективным для дальнейшего использования в солнечных батареях с тонкой пленкой. Некоторое время шли споры о его токсичности, но исследования показали, что вредные выбросы минимальны и не представляют опасности для окружающих. При этом, его КПД достиг 11%, а цена за 1 Вт на 30% ниже, по сравнению с кремниевыми аналогами.

Селенид меди-индия считается еще более эффективным. В настоящее время индий в большинстве случаев заменяется галлием, поскольку он практически весь используется в других производствах. Однако, даже в этом случае пленочные солнечные батареи нового поколения выдают КПД, равный 20%.

Конструкция тонкопленочных панелей

Характерной особенностью таких конструкций является их высокая производительность даже при воздействии рассеянного света. В течение года суммарная мощность этих устройств на 15% превышает кремниевые аналоги. В этом заключаются их явные преимущества.

На определенном этапе, в зависимости от площади, тонкопленочные солнечные батареи начинают преобладать над другими типами модулей. При пасмурной погоде они будут работать значительно эффективнее, так же как и при высокой температуре в жаркую погоду, как и планировал изобретатель. Благодаря физическим свойствам эти изделия часто применяются в декоративной отделке фасадов зданий и в других дизайнерских решениях. Специалисты прогнозируют, что это солнечные батареи будущего.

Важным конструктивным решением является нанесение тонкой пленки на цилиндрические поверхности. В качестве такого цилиндра используется стеклянная трубка, которая после нанесения фотоэлемента помещается внутрь другой трубки. Вторая трубка имеет больший диаметр и к ней подведены электрические контакты.

Благодаря цилиндрическому исполнению, пленочные солнечные батареи поглощают большее количество света, а 40 деталей свободно размещаются на площади 2 м 2 . Они устойчивы к сильным порывам ветра и могут свободно устанавливаться на крышах.

Читайте также:  Расчет мощности солнечных батарей для дома: формулы и погрешности

В настоящее время плёночные конструкции оснащаются различными типами каскадных элементов, обладающих многослойной структурой. Вместо одного, в них имеется несколько р-п переходов, что в значительной степени увеличивает эффективность таких модулей. В результате, электрическая энергия, генерируемая панелями, снижает свою себестоимость в два раза относительно кремниевых элементов. На всей площади плёнки с тремя переходами КПД составляет 31%, а при пяти переходах это значение может достичь 43%.

Благодаря постоянному развитию технологий, тонкопленочные солнечные батареи в ближайшее время станут доступными для большинства населения. Они будут не только дешевыми, но и эффективными.

Производство солнечных батарей

Солнечные батареи для дома

Монокристаллические и поликристаллические солнечные батареи

Виды солнечных батарей

Содержание:

  1. Кремниевые солнечные батареи
  2. Плёночные солнечные батареи
  3. Что такое концентрационные солнечные модули
  4. Фотосенсибилизированные батареи

Какие бывают виды солнечных панелей?

Сегодня различные типы солнечных панелей набирают всё больше и больше популярности. И не зря, ведь помимо того, что население планеты Земля начинает задумываться об экологических источниках энергии, солнечные панели ещё и становятся всё более и более энергоэффективными. Конечно, самое основное что входит в любую солнечную систему энергообеспечения — это панели или батареи , поэтому важно разбираться что к чему. Конечно, система намного сложнее и в неё входят всякие стабилизаторы, инверторы и прочее, однако это не основной момент.

На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему.

Кремниевые солнечные батареи

Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?

Монокристаллические солнечные батареи

Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.

Поликристаллические солнечные панели

Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу:

Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:

Фактор Монокристаллы Поликристаллы
Разница в структуреКристаллы направлены в одну сторону, зёрна параллельныКристаллы направлены в разную стороны, не параллельны
Стабильность работыВысокаяМеньше
СтоимостьДорогостоящие батареиТакже дорогостоящие, но дешевле
Окупаемость2 годадо 3х лет
КПДдо 22%до 18%
Технология производстваСовершеннее, сложнее, точнееПроще, отсюда и низкая стоимость

Аморфные солнечные панели или батареи из аморфного кремния

  • Данный вид солнечных батарей можно отнести как к кремниевым (потому что материал изготовления — кремний) так и к плёночным, ведь изготовлены они по принципу производства плёночных батарей. Но всё же отличия есть.
  • Здесь используются не кристаллы кремния, а так называемый силан (кремневодород). Его наносят на подложку, внутри батарей. КПД у такого вида солнечных батарей намного ниже — около 5%. Но всё не так плохо! Есть и преимущества, среди которых можно назвать: намного лучшее поглощение (в 20 раз лучше), лучше работает при отсутствии прямого солнца, когда пасмурно, эластичность панелей.
  • Также бывают сочетания моно и поликристаллических панелей с аморфными. Такое сочетание позволяет соединить преимущества двух различных типов. Например, батареи лучше работают, когда солнца недостаточно для обычных кристаллических батарей.

Плёночные солнечные батареи

Плёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности.

Плёночные батареи на основе теллурида кадмия

  • Кадмий — это материал, который обладает высоким уровнем светопоглощения, открытый как материал для солнечных батарей в 70-х годах. На сегодняшний день, этот материал применяется уже не только в космосе, на околоземной орбите, но и активно используется в качестве материала для солнечных панелей обычного, домашнего пользования.
  • Самой главной проблемой в использовании такого материала является его ядовитость. Однако исследования говорят о том, что уровень кадмия. который уходит в атмосферу, слишком мал, чтобы наносить вред здоровью человека. Также, несмотря на низкий КПД в районе 10%, стоит единица мощности в таких батареях меньше, чем у аналогов.

Плёночные панели на основе селенида меди-индия

Тип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%.

Полимерные солнечные панели

Вид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью.

Сравнительная таблица: виды солнечных батарей и уровень КПД

Напоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.

КПДв процентах
Монокристаллические17-22%
Поликристаллические12-18%
Аморфные5-6%
Теллурид кадмия10-12%
Селенид меди-индия15-20%
Полимерные5-6%

Что такое концентрационные солнечные модули?

Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года.

Фотосенсибилизированные батареи

Фотосенсибилизирующий краситель опять-таки помогает оптимизировать приём солнечной энергии, но при этом солнечные панели работающие по этому принципу, скорее напоминают процесс фотосинтеза в природе. Впрочем, пока что это только концептуальная идея, не имеющая воплощения. Кто знает, может пока Вы соберётесь покупать солнечные панели, она уже будут вовсю продаваться на рынке.

Ну что, разобрались какие бывают солнечные батареи? Надеемся, эта статья поможет Вам определиться, какую батарею поставить для дома , но если после прочтения у Вас возникло ещё больше вопросов — милости просим на наш сайт, где Вы найдёте всю информацию про солнечные батареи и источники питания, работающие на солнечной энергии а также про различные виды солнечных панелей.

Сравнительный обзор различных видов солнечных батарей

Сейчас доступен такой вид альтернативной энергии, как солнечная. При помощи размещения специальных солнечных батарей можно получать электричество, которое полностью сможет покрыть все ваши энергозатраты. Но здесь одной батареи будет недостаточно, понадобится целая система. Количество панелей зависит от их мощности, типа и потребляемого количества энергии. Перед тем как обзавестись собственной солнечной электростанцией, ознакомьтесь с видами солнечных батарей и выберите для себя оптимальный.

Что такое солнечная батарея

Главная задача солнечной батареи – это преобразовать солнечный свет в электроэнергию. То есть за счет установки нескольких конструкций можно обеспечить дом током, не прибегая к использованию общей электросети. Солнечные панели являются экологически чистым способом преобразования света в ток, при этом они выдают самый высокий показатель эффективности в отличие от других альтернативных источников энергии.

Панель представлена в виде прямоугольника. Размер панели схож с шифером. Это самый распространенный тип. На ней размещено 36 элементов, которые покрыты фотопленкой или стеклом. При помощи соединения и специальных туннелей свободные электроны, которые образуются под действием солнечного света, передвигаются и накапливаются в виде постоянного тока в аккумуляторе. Когда там собирается необходимое количество тока, он при помощи инвертора перерабатывается на переменный с нужным напряжением 220В. Но, чтобы обеспечить дом электроэнергией полностью или частично, понадобится несколько таких солнечных панелей. Важным элементом системы являются крепления для солнечных панелей.

Виды кремниевых батарей

Наиболее популярными являются кремниевые батареи. Они отличаются долговечностью и качественной работой. Их различают два вида: монокристаллические и поликристаллические.

Монокристаллические

Такой вид батарей относится к самым дорогостоящим, потому что они изготавливаются из высококачественных материалов при соблюдении сложного технологического процесса. Главным материалом служит слой из специально выращенных кристаллов кремния. Готовые панели представляют собой бруски с кремниевой решеткой темно-синего цвета с закругленными краями. В процессе производства модуль разрезают на более тонкие пластины.

В результате использования качественного сырья и сложного процесса производства кремниевые монокристаллические панели достигают наивысших показателей производительности (КПД до 25%), а также отличаются длительным сроком эксплуатации с минимальным процентом деградации (около 5% за 25 лет). Высокий показатель эффективности достигается за счет использования всей поверхности модуля, даже захватывая рассеянный солнечный свет.

Несмотря на дороговизну монокристаллических конструкций, они быстрее себя окупают. Кроме того, из-за высокой мощности и производительности их можно использовать в меньшем количестве, тем самым экономя на площади. Однако нужно постоянно за ними ухаживать, так как малейшее загрязнение или затемнение приводит к существенному снижению выработки.

Поликристаллические

В производстве поликристаллических модулей участвует несколько кристаллов. По своим качествам они уступают монокристаллическим. Во-первых, это связано с использованием низкокачественного кремния, а во-вторых, с более простым процессом производства. В их основу заложен материал, который получен при переработке непригодных монокристаллических батарей и залит в формы, поэтому батареи имеют неоднородный цвет синего оттенка.

Солнечные панели из поликристаллов довольно тонкие, но ввиду меньшей производительности их потребуется больше, чтобы обеспечить себя необходимым количеством энергии. Но, несмотря на существенные минусы, поликристаллические солнечные батареи пользуются большой популярностью. Это связано с тем, что они менее прихотливы к захватыванию солнечного света и работают с большей отдачей в пасмурную погоду. Кроме того, с каждым годом инженеры работают над повышением величины КПД поликристаллических модулей, что в скором времени приблизит их к показателю 20-22%.

Виды пленочных батарей

Теперь рассмотрим виды солнечных батарей пленочного типа. Пленочная панель достаточно недавно появилась в сфере получения альтернативной солнечной энергии. На сегодняшний день они не пользуются большой популярностью, в том числе и из-за высокой стоимости, но имеют свои преимущества. Они бывают нескольких типов. Рассмотрим каждый из них: на основе теллурида кадмия и на основе Cigs.

На основе теллурида кадмия

Первый тип пленочной солнечной панели произведен на основе теллурида кадмия. Данное решение оправдано высоким уровнем поглощения кадмием солнечного света. Еще несколько десятков лет назад кадмий активно применялся в космосе, но никак не для домашнего использования, потому что он обладает высокой степенью ядовитости. Но при пользовании солнечными панелями он не составляет угрозы для человеческого здоровья. Все испарения, полученные при его активации солнечной радиацией, уходят в атмосферу.

На основе CIGS

Вторым представителем пленочных солнечных батарей выступают панели на основе использования CIGS. Это полупроводник, который состоит из таких элементов как галлий, медь, индий и селен. Они имеют схожую структуру с кадмиевыми панелями, гибкие и отличаются широким способом применения. Солнечная панель на основе полупроводника CIGS используется в космических спутниках, при производстве жидкокристаллических мониторов или в качестве портативных туристических приспособлений для получения энергии.

Пленочная панель на основе галлия – это новое направление в сфере источников питания. В отличие от кадмиевых батарей эффективность их работы достаточно высока, от 15 до 20%, поэтому они составляют прямую конкуренцию монокристаллическим батареям. Если научно-исследовательским центрам удастся снизить себестоимость производства таких панелей, то они смогут стать лидерами на рынке данной продукции.

Амфорные батареи

Еще одним типом солнечных батарей являются амфорные модули. Такая солнечная батарея производится из амфорного кремния и отличается от стандартных кремниевых батарей способом изготовления. Здесь используется не чистое сырье, а его гибрид, а если быть точнее, то горячие пары, которые осаждают подложку. Принцип напоминает больше производство пленочных батарей. Результатом подобной работы становятся готовые солнечные панели, однако при этом не нужно выращивать кристаллы, что резко сокращает и время, и затраты на производство. Основным материалом выступает силан.

Сегодня на рынке солнечных панелей амфорные модули представлены тремя поколениями. Основная разница между панелями заключается в эффективности их работы. Если первый вариант солнечной панели был выпущен с заявленными характеристиками КПД максимум 5%, второе поколение достигло 9%, то на сегодняшний день их показатель уже равняется 12%. Они не такие распространенные, так как остаются в цене предельно дорогими, но при этом уступают в производительности кремниевым солнечным панелям.

Читайте также:  Уличные светильники, лампы и фонари для дачи на солнечных батареях

Особые характеристики амфорных батарей:

  • Возможность применять гибкую панель на любых участках, строениях или архитектурных объектах.
  • Стабильная работа при критически высоких показателях температуры.
  • Долгий срок службы – до 25 лет.
  • Невысокий процент КПД.
  • Лучшая производительность наравне с другими панелями при рассеянном солнечном свете.

Если обратиться к практике, то батарея из амфорного кремния активно используется в качестве тонких пленочных модулей. Это связано с особенностью производственного процесса, где в результате получается панель на гибкой, а не на твердой подложке. Как бы ни казалось странным, амфорные батареи стоят дороже, особенно за счет своей эластичной структуры. Наибольший спрос на них в северных районах, так как благодаря физико-химическому составу модулей им свойственно поглощать солнечную энергию даже при слабом рассеянном свете.

После описания всех видов солнечных панелей остается только сделать вывод, какие модули лучше всего выполняют функцию выработки электроэнергии. Дать однозначный ответ нельзя, потому что необходимо отталкиваться от финансовых возможностей и от желаемой мощности солнечной батареи. Первое место специалисты отдают монокристаллическим панелям ввиду их высокой эффективности и долгого срока службы, однако данный показатель не всегда является значимым. Здесь важно оценить все технические характеристики работы панелей в комплексе, а также сопоставить их стоимость.

Солнечные панели (батареи) для дома

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Электрические солнечные батареи для дома открывают много возможностей

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Солнечная панель для дома состоит из некоторого количества фтоэлементов

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;

    Монокристаллические. Каждый фотоэлемент — один кристалл кремния. Монокристаллические фотоэлементы имеют неплохой КПД (порядка 24,7%), но и стоимость их несколько выше. Отличить можно, во-первых, по однородному насыщенному синему цвету, во-вторых, по скругленным краям фотоэлемента.

Виды кремниевых фотоэлементов для солнечных батарей

Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Солнечные электростанции для дома могут быть не такими дорогими, если подходить к вопросу взвешенно

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:

  • Приобретайте солнечные батареи для дома с выходным напряжением 12 В. Именно от такого напряжения работает большая часть бытовой и строительной техники, светодиодные светильники и т.д. Техники, работающей от 24 или 48 вольт намного меньше. Можете посмотреть паспорта или воспользуйтесь поиском.
  • Не используйте для освещения лампы накаливания. Они потребляют слишком много электроэнергии, да и работают от 220 в. Замените их на светодиодные. Для них постоянный ток в 12 В — это то, что надо.

«Полная» система электропитания от солнечных батарей выглядит так

Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.

    Не покупайте гелиевые или аккумуляторы глубокого разряда. Они не стоят своих денег. С солнечными батареями для дома отлично работают даже отслужившие свой срок автомобильные АКБ . Они нормально работают еще минимум, 5 лет.

Если площадь не ограничена, можно купить солнечную батарею на поликристаллических фотоэлементах

Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Солнечная панель на 4 В имеет 7 элемента

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Пример технических характеристик солнечных батарей для дома

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Бликов на корпусе быть не должно

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно тут).

Солнечные батареи для дома: электрическое подключение

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Добавить комментарий